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Abstract

The concept of video-wise just noticeable difference (JND) was recently proposed to determine the lowest bitrate at which a
source video can be compressed without perceptible quality loss with a given probability.

This bitrate is usually obtained from an estimate of the satisfied used ratio (SUR) at each bitrate, respectively encoding quality
parameter. The SUR is the probability that the distortion corresponding to this bitrate is not noticeable. Commonly, the
SUR is computed experimentally by estimating the subjective JND threshold of each subject using binary search, fitting a
distribution model to the collected data, and creating the complementary cumulative distribution function of the distribution.
The subjective tests consist of paired comparisons between the source video and compressed versions. However, we show that
this approach typically over- or underestimates the SUR.

To address this shortcoming, we directly estimate the SUR function by considering the entire population as a collective observer.
Our method randomly chooses the subject for each paired comparison and uses a state-of-the-art Bayesian adaptive psychometric
method (QUEST+) to select the compressed video in the paired comparison.

Our simulations show that this collective method yields more accurate SUR results with fewer comparisons.

We also provide a subjective experiment to assess the JND and SUR for compressed video. In the paired comparisons, we apply
a flicker test that compares a video that interleaves the source video and its compressed version with the source video. Analysis
of the subjective data revealed that the flicker test provides on average higher sensitivity and precision in the assessment of the
JND threshold than the usual test that compares compressed versions with the source video.

Using crowdsourcing and the proposed approach, we build a JND dataset for 45 source video sequences that are encoded with

both advanced video coding (AVC) and versatile video coding (VVC) at all available quantization parameters. Our dataset

is available at http://database.mmsp-kn.de/flickervidset-database.html.
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Abstract—The concept of video-wise just noticeable difference
(JND) was recently proposed to determine the lowest bitrate
at which a source video can be compressed without perceptible
quality loss with a given probability. This bitrate is usually ob-
tained from an estimate of the satisfied used ratio (SUR) at each
bitrate, respectively encoding quality parameter. The SUR is the
probability that the distortion corresponding to this bitrate is not
noticeable. Commonly, the SUR is computed experimentally by
estimating the subjective JND threshold of each subject using
binary search, fitting a distribution model to the collected data,
and creating the complementary cumulative distribution function
of the distribution. The subjective tests consist of paired compar-
isons between the source video and compressed versions. However,
we show that this approach typically over- or underestimates
the SUR. To address this shortcoming, we directly estimate the
SUR function by considering the entire population as a collective
observer. Our method randomly chooses the subject for each
paired comparison and uses a state-of-the-art Bayesian adaptive
psychometric method (QUEST+) to select the compressed video in
the paired comparison. Our simulations show that this collective
method yields more accurate SUR results with fewer comparisons.
We also provide a subjective experiment to assess the JND and
SUR for compressed video. In the paired comparisons, we apply a
flicker test that compares a video that interleaves the source video
and its compressed version with the source video. Analysis of the
subjective data revealed that the flicker test provides on average
higher sensitivity and precision in the assessment of the JND
threshold than the usual test that compares compressed versions
with the source video. Using crowdsourcing and the proposed ap-
proach, we build a JND dataset for 45 source video sequences that
are encoded with both advanced video coding (AVC) and versatile
video coding (VVC) at all available quantization parameters. Our
dataset is available at http://database.mmsp-kn.de/flickervidset-
database.html.

Index Terms—Just noticeable difference, psychometric func-
tion, satisfied user ratio, flicker test, subjective quality assessment,
Bayesian adaptive psychometric testing method, AVC, VVC.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project ID 496858717 and Project ID 251654672 – TRR 161
(Project A05). This research was also kindly supported by the Zukunftskolleg,
the University of Konstanz, with funding from the Excellence Strategy of the
German Federal and State Governments.

Mohsen Jenadeleh (corresponding author) and Dietmar Saupe are with
the Department of Computer and Information Science, University of Kon-
stanz, 78464 Konstanz, Germany (e-mail: mohsen.jenadeleh@uni-konstanz.de;
dietmar.saupe@uni-konstanz.de).

Raouf Hamzaoui is with the School of Engineering and Sustainable Devel-
opment, De Montfort University, LE1 9BH Leicester, UK (e-mail: rhamza-
oui@dmu.ac.uk ).

Ulf-Dietrich Reips is with the Department of Psychology, University of
Konstanz, 78464 Konstanz, Germany (e-mail: reips@uni-konstanz.de ).

I. INTRODUCTION

COMPRESSION is the main tool to achieve a target video
bitrate required to meet transmission bandwidth and stor-

age constraints. However, as the bitrate decreases, more com-
pression artifacts are introduced, eventually becoming notice-
able and even annoying to human consumers. Therefore, meth-
ods for assessing video quality are being explored to determine
the lowest bitrate at which perceived visual quality is at a level
the video content provider deems appropriate for delivery.

In the context of high-quality media streaming, the following
challenges arise in automatic video quality assessment [1]: (1)
Quality assurance for the re-encodings of media submitted by
the original producers, (2) quality monitoring of the delivered
video sequences to characterize the general satisfaction require-
ments of subscribers, (3) optimizing encoding parameters such
that the bitrate is minimized for each targeted visual quality
level, (4) optimizing streaming bitrate selection based on the
speed of the consumer’s network and the perceptual qualities
of the upcoming video segments within some time horizon, and
(5) codec and processing technology evaluation for the purpose
of helping to select and update the methods for deployment that
yield the best perceptual qualities.

In streaming applications, consumers pay for services and
expect to receive content that does not exhibit any annoying
impairments. Thus, in this context only the top quality levels
of streaming around the near-lossless range are relevant. To
provide a fine granularity for such high quality stimuli, a
new evaluation approach was introduced, based on the concept
of just noticeable difference (JND). The JND goes back to
the 19th-century psychologist Ernst Weber, who defined it as
the “minimum amount by which stimulus intensity must be
changed in order to produce a noticeable variation in sensory
experience”.

Without loss of generality, let us consider a video codec
parameterized by a distortion level x ∈ [0, 1]. When x = 0,
the coding is lossless, i.e., the reconstructed video is identical
to the source, so no distortion occurs. However, as x increases,
the bitrate of the compressed video decreases, which implies
that the likelihood increases that distortions can be perceived.
Thus, when a video is compressed, the smallest distortion level
x at which an observer can perceive visual distortion is the JND.

However, since physiological and visual attention mecha-
nisms vary and involve many subjective factors, the JND is a
quantity that depends on such indeterminate circumstances. In
mathematical terms, the JND is a random variable. A discrete
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Fig. 1: Probability density function (PDF), cumulative distribu-
tion function (CDF) or psychometric function, and SUR func-
tion for a continuous JND random variable. The JND threshold
is the distortion level where the psychometric function is equal
to 1/2.

random variable is characterized by its probability distribution
function and a continuous random variable by its probability
density function. When giving a number for the JND, it usually
refers to the JND threshold, namely the smallest distortion level
for which the observer will notice a degradation of quality with
a probability of 1/2.

The cumulative distribution of the JND random variable is
a monotonically increasing function that specifies the proba-
bility of detecting distortion for each distortion level. In psy-
chophysics, this function is called the psychometric function for
the JND, and its graph typically is an S-shaped curve (Fig. 1).

For a whole population of subjects, the satisfied user ratio
(SUR) denotes the probability that a randomly drawn subject
cannot notice any distortion artifact when comparing a source
video with its compressed version at a given distortion level. So
the SUR is also a function of the distortion level and given by
the complementary cumulative distribution function of the JND
random variables, averaged over all subjects in the population.
Modeling the SUR can help content providers minimize trans-
mission costs while guaranteeing user satisfaction for any target
proportion of their customers.

Since 2015, datasets of videos annotated with JND measure-
ments have been created [2], [3], [4], [5]. These works apply
a three-stage method which, for a given source stimulus, first
determines the individual JND thresholds for all participating
subjects of a lab study, then fits a distribution model to the
threshold data, and finally computes the complementary cumu-
lative distribution function as an estimate of the SUR curve.

This procedure models the individual psychometric functions
as Heaviside step functions, each having the discontinuous
jump at the individual JND threshold. However, this simplifi-
cation cannot account for expected occurrences of detection of
distortions at subthreshold distortion parameters. Consequently,
the resulting SUR can be overestimated at subthreshold pa-
rameters. When applied in a system for rate-control, such an
overestimate would make compression artifacts visible to a
larger fraction of the viewer population than anticipated.

Instead of JND thresholds, entire psychometric functions
must be attained for the correctness of the derived SUR curves.
Models of psychometric functions come from different classes
that describe the probability of distortion detection by the un-
derlying sensory mechanism as a parameterized function of the
distortion level [6]. There are several adaptive methods to es-
timate the parameters. For this purpose, we adopted a state-of-
the-art Bayesian adaptive psychometric method, QUEST+ [7].

To estimate the SUR, we could use the adaptive psychometric
method to sequentially estimate the cumulative JND distribu-
tions of many subjects to be averaged. However, alternatively,
we may regard the entire population as a collective observer and
apply QUEST+ to estimate its psychometric function directly.
This can be implemented by newly choosing a random observer
for each trial of the adaptive method. We demonstrate by sim-
ulation that this is more efficient than estimating and averaging
individual JND distributions of subjects.

In 2014, the flicker test was introduced [8] to compare a
source image and a distorted version. In this method, the test
image is temporally interleaved with the source image, and
artifacts in the test image may or may not appear to the viewer
as a flicker effect. In the experiments, the flickering image is
randomly displayed on the left or right side and the source
image on the other side. The test subjects have to judge on
which side a flicker effect is seen.

We show that the flicker test can also be applied for video
quality assessment in the near-lossless quality range. The flicker
test provides increased sensitivity to distortion for the human
visual system. Moreover, it increases the precision compared to
the plain test, i.e., side-by-side comparisons between a distorted
video sequence and its source.

Evaluating video quality in controlled and standardized lab
experiments is often time-consuming and may not fully capture
the range of viewing conditions experienced in real-world set-
tings. In contrast, crowdsourcing experiments provide various
advantages, including a diverse participant pool, realistic hard-
ware setups, and viewing environments that resemble typical
users [9], [10]. Recent research [9], [10], [11], [12], [13] has
shown that video quality ratings obtained through crowdsourc-
ing are comparable to those obtained in lab settings.

In [14], a large JND-based dataset of JPEG and BPG com-
pressed images was generated using crowdsourcing experi-
ments. In this paper, we propose crowdsourcing and the flicker
test to build a JND dataset for compressed videos.

There is an ongoing quest in research to develop the most
accurate, efficient, and general models for predicting visual
quality of compressed video. Examples are [15], [16], [17],
[18] for prediction of mean opinion scores and [19], [20], [21],
[22], [23], [24], [25], [26] for prediction of the JND, respec-
tively the SUR. The most successful approaches are based on
machine learning, especially deep learning models. However,
deep learning is data hungry, and the datasets for video JND
are lacking in size and quality. All current video JND datasets
were produced in laboratory studies in which individual JNDs
were obtained by a time-costly method, the binary search.
This severely limited the number of video sequences and their
JNDs. The data in some previous studies are also inconsistent,
showing very large intersubject variability. Therefore, and as
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noted in recent papers [25], [27], [19], there is a need for larger
and more consistent datasets for video JND to facilitate further
advances in the state-of-the-art video JND prediction methods,
in particular deep learning models.

Our paper makes four main contributions to help build such
large and reliable video JND datasets.

• We show that the common approach of estimating the
SUR function from the distribution of individual JND
thresholds of a group of subjects causes a bias that may
lead to an overestimation or underestimation of the SUR.

• We propose a new method to estimate the SUR. Our
method, which we call the collective observer, randomly
selects subjects to collect responses to paired compar-
isons. The distortion level for each paired comparison is
decided by an adaptive psychometric testing procedure
(QUEST+ [7]). We show by simulations that our method
estimates the SUR more accurately and efficiently than the
common approach.

• We use a flicker test to estimate the JND in encoded
video sequences. Our experimental results show that the
flicker test increases the sensitivity and precision of the
estimation of the JND threshold.

• We conduct a within-subjects design subjective study to
compare the estimated SUR using the flicker and plain
tests. We use our QUEST+-based collective psychometric
function method and crowdsourcing to build a JND dataset
for 45 source videos encoded with advanced video coding
(AVC) (a.k.a. H.264 and MPEG-4 Part 10) [28], [29] and
versatile video coding (VVC) (a.k.a. H.266 and MPEG-I
Part 3) [30], [31].

The remainder of this paper is organized as follows. Sec-
tion II presents the state-of-the-art related to our contributions.
We review the past attempts to estimate JND thresholds, fitted
distributions, and corresponding SUR curves. Then we review
the past work with the flicker test and present an overview of the
current JND-based video quality sets. Section III gives formal
definitions of the main terminology such as the individual and
collective JND, their thresholds, psychometric functions, and
the SUR. For Gaussian models of the JND, we show that a
percentile of JND thresholds in an observer population is an
overestimate of SUR at subthreshold distortion parameters. We
introduce the concept of the collective observer and show by
simulation that it provides a more efficient way to estimate
the collective psychometric function and the SUR curve than
averaging a set of individual JND distributions. Section IV
explains how we adapted the flicker test for video quality
assessment. Section V describes how to crowdsource JNDs for
videos. Section VI compares the efficiency of the flicker test
with conventional paired comparisons. For this purpose, we
conducted a crowdsourcing experiment using a within-subject
study design to evaluate the SUR curves for these source videos
using QUEST+, with both the flicker test and the plain test.

II. RELATED WORK

In this section, we review the state-of-the-art with respect to
the following main contributions of the paper: JND and SUR
estimation, flicker test for quality assessment, and construction
of video-based JND datasets.

A. JND and SUR estimation

In previous JND studies [32], [33], [4], [3], [34], [35],
[36], [37], [14], the SUR function is built by aggregating the
psychometric functions of a group of subjects. Each subject’s
psychometric function is estimated as a Heaviside function,
with the step at the JND threshold and neglecting the subject’s
uncertainty in determining the JND. A paired comparison is
typically used to estimate the JND threshold for a given subject.
For example, when comparing a pair of videos, a high-quality
source video and a distorted version are played side-by-side,
one after the other or simultaneously. The subject indicates
which video is of lower or higher quality depending on the
subjective test question. In principle, the source video should
be compared to the whole set of distorted versions. However,
in practice, the search for the JND threshold is accelerated with
binary search [5], [2], [4] or relaxed binary search [3].

Note that modern psychophysics approaches [38], [39], such
as signal detection theory, argue that the observed JND is not an
absolute quantity but depends on motivational and perceptual
parameters. Thus, the JND for a given individual is a statistical
rather than an exact quantity. We show in Section III that this
implies that fitting a distribution to the obtained JND thresholds
does not properly represent the overall, population-wise JND
distribution and may result in an overestimation of the SUR.
In this contribution, we propose a solution to overcome this
limitation.

B. Flicker test for quality assessment

The flicker test was introduced by Hoffman and Stolitzka in
2014 [8] for image quality assessment to increase the sensitivity
of the human visual system in detecting image artifacts in near-
lossless image compression. The method proved effective and
later was adopted by the JPEG AIC standard [40].

In [41], it was shown that the flicker test provides higher sen-
sitivity for reconstructing impairment scales of distorted images
than the plain test. Furthermore, it was shown that the flicker
test achieves the same correlation with ground truth scores with
a smaller number of required paired comparisons than the plain
test. In [37], the flicker test was used for subjective picture-
wise JND assessment to compare a slider-based method, a
keystroke-based method, and the paired comparison with the
relaxed binary search method. The flicker test was shown to
provide about twice the sensitivity of a conventional side-by-
side comparison for estimating the JND for JPEG compressed
images. We attribute the benefits of the flicker test compared to
the conventional side-by-side comparison to a reduction in the
required visual short-term memory to make a judgment [42]
and to the high sensitivity of the human visual system to detect
a temporal contrast [43]. In [14], the flicker test was used in
large-scale crowdsourcing experiments to determine the JND
for JPEG and BPG compressed images.

First attempts to extend the flicker test to video sequences
were briefly mentioned in [44]. The results were not regarded
as promising, but no detailed report was given. In [40], the deci-
sion not to include the flicker test for video quality assessment
in the JPEG XS standard was motivated by the fact that motion
could mask the flicker, an effect called motion-silencing.
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TABLE I: Comparison of the state-of-the-art JND-based video quality datasets

.

Datasets Lin et al. [5] MCL-JCV [2] Huang et al. [4] VideoSet [3] our dataset
Publication year 2015 2016 2017 2017 2022
Number of source videos 5 30 40 220 45
Resolution of source videos 1920× 1080 1920× 1080 1920× 1080 1920× 1080a 640× 480
Distortion type AVC/HEVC AVC HEVC AVC AVC/VVC
Distortion levels per each stimulus 51/51 51 51 51 51/63
Test environment lab lab lab lab online
Subjective assessment method PCb PCb PCc PCb FTd/PCc

Search algorithm binary search binary search binary search relaxed binary
search QUEST+

a Three lower resolutions of the same video were also used: 1280 × 720, 960 × 540, and 640 × 360.
b paired comparison (PC): the two videos are displayed sequentially.
c PC: the two videos are displayed side-by-side.
d Flicker test (FT): a source high quality video and a flickering version are displayed side-by-side. Subjects determine which video is flickering.

In this contribution, we revisit and examine the flicker test
for video quality assessment in a crowdsourcing study.

C. JND-based video quality datasets

The current JND datasets [2], [5], [4], [3] for compressed
video differ in the number of source videos, resolution, com-
pression type, subjective assessment method, and search algo-
rithm. Table I summarizes these datasets. In the following, we
briefly describe how each dataset was built.

The study by Lin et al. [5] involved five video sequences
of resolution 1920 × 1080. The videos were displayed on a
65-inch TV with a resolution of 3840 × 2160. The viewing
distance was 2 m from the center of the monitor. The video
sequences were encoded with AVC and high efficiency video
coding (HEVC). The video sequences were compressed by
varying the value of the quantization parameter (QP) of the
video codec from 1 to 51. A subjective study was conducted
to determine the number of quality levels that a subject can
distinguish. A bisection search method was used to determine
these quality levels. In this search two videos are displayed
sequentially, and the subject has to assess whether they are
noticeably different. 20 subjects participated in the study.

Wang et al. [2] considered 30 source video sequences. More
than 150 people participated in the study. JND samples were
collected from 50 subjects. The other settings were as in [5].
The resulting JND dataset was called MCL-JCV.

Huang et al. [4] generated a JND-based dataset for HEVC.
The dataset contains 40 high-definition (HD) source video clips
with a frame rate of 30 fps and a duration of 5 s. All source
videos were encoded using the HM 16.0 HEVC reference
software, with QP values ranging from 0 to 51. To estimate
the JND threshold for each source and its 51 encoded versions,
a subjective test was conducted with 30 subjects. The source
video and an encoded version were played side-by-side time-
synchronously on a 65-inch 4K UHD TV display in a laboratory
environment. The standard binary search was used to speed up
the search for the JND threshold. Outliers were excluded with
the three-sigma rule.

Wang et al. [3] built a large-scale JND video dataset called
VideoSet for 220 source videos of 5 s in four resolutions
(1080p, 720p, 540p, 360p). Each source video was compressed
with AVC using QP values from 1 to 51. The viewing distance
was set according to the ITU-R BT.2022 recommendation.

The source video and a distorted version were displayed se-
quentially. A relaxed binary search was used to estimate the
personal JND threshold for each subject. At least 30 subjects
were involved in the JND estimation for each video sequence.
Data from unreliable subjects and outliers were removed.

All of the current video JND datasets were built in laboratory
experiments and are limited in size.

III. THE COLLECTIVE PSYCHOMETRIC FUNCTION

This section presents a formal definition of the collective
psychometric function that underlies the SUR curve. For this
purpose, we follow and adapt the notations introduced in [45].
Then we consider estimating the SUR and show by simulation
that it is more efficient to directly estimate the collective psy-
chometric function rather than averaging a number of individual
psychometric functions which are estimated individually.

A. Definitions

The psychometric function models the relationship between
the level of distortion of the stimulus and an observer’s per-
formance in detecting the distortion or discriminating between
the distorted and the source stimulus. The SUR assumes a total
population of observers and estimates the proportion of those
who cannot detect the distortion.

We consider a lossy image or video compression scheme
that produces monotonically increasing distortion magnitudes.
The distortion depends on an encoding parameter that can take
only a finite number of values. For example, for AVC and
VVC, we use QP to control the quality of the encoded video.
The range of QP values is 1, . . . , 51 for AVC and 1, . . . , 63
for VVC. Increasing QP decreases the bitrate and reduces the
visual quality.

Definition 1 (Individual JND). For a given observer and a
pristine source stimulus S[0], we associate distorted stim-
uli S[n], n = 1, . . . ,N corresponding to distortion levels
n = 1, . . . ,N . The individual just noticeable difference,
which we denote by JND, is a random variable whose value
is the smallest distortion level n that can be perceived by
the observer when the stimulus S[n] is compared to the
source stimulus S[0].
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We give an interpretation of this model in the context of the
detection task, judging a test stimulus at distortion level n with
respect to the corresponding source. According to the above
definition, the observer will detect the distortion in the test
stimulus with the probability that JND ≤ n. Equivalently, we
may state that the observer notices the distortion if a randomly
drawn sample of JND has a value less than or equal to n.

In a paired comparison in the 2-alternative forced-choice
(2AFC) setting, the two stimuli are presented in random order,
and the task is to identify the one with distortion. In this case,
an attentive observer will identify the distorted stimulus with
probability 1

2 + 1
2Prob(JND ≤ n).

To define the SUR, we consider a whole population of
observers, each of whom has an individual JND distribution.

Definition 2 (Collective JND). Assume a population of
observers and a pristine source stimulus S[0] with distorted
stimuli S[n], n = 1, . . . ,N . The collective just noticeable
difference, which we denote by JND, is a random variable
whose value is the smallest distortion level n that can be
perceived by a random observer of the population when
the stimulus S[n] is compared to the source stimulus S[0].

For a finite population of observers, the distribution of the
collective JND is just the average of the distributions of the
individual JNDs of all observers.

Definition 3 (JND threshold). The median of the indi-
vidual (resp. collective) JND random variable is called the
individual (resp. collective) JND threshold.

Definition 4 (Psychometric functions and SUR). The
individual and collective psychometric functions associ-
ated with the JND are the cumulative distribution functions
of the corresponding JND random variables. The SUR is
the complementary cumulative distribution function of the
collective JND random variable.

In the above definitions, discrete distortion levels n =
1, . . . ,N are used, which is the case for the main applica-
tion, i.e., JND-based quality assessment of compressed video
sequences. It is straightforward, however, to rewrite and apply
these definitions for continuous distortion levels such as addi-
tive Gaussian noise, parameterized by the noise amplitude as
the distortion level. In the next subsection, for simplicity of
notation, we assume that the distortion level is continuous.

B. Analysis of common SUR estimation
In previous work, the SUR is estimated by the complemen-

tary cumulative distribution function of a set of estimated indi-
vidual JND thresholds. Several sources of error may affect the
accuracy of this estimation. (1) The sample of JND thresholds
may stem from a set of subjects that is not representative of
the population, (2) JND thresholds estimated by approximation
methods like bisection may be inaccurate, and (3) the fitting

procedure to approximate the distribution of JND thresholds
may also introduce errors.

We show that even if we could rule out all these sources
of error, there still would be a systematic bias in the method.
Typically, this bias will lead to an overestimation of the SUR,
as shown by the following general counterexample.

Proposition 1. Assume that the individual JND random
variables are normally distributed with variance σ2, and
the individual JND thresholds are normally distributed
with mean µ̄ and variance σ2

0 . Then the complementary
cumulative distribution function of the individual JND
thresholds overestimates the SUR for all distortion levels
smaller than µ̄ and underestimates it for all distortion
levels greater than µ̄.

Proof. Let ŜUR(x) denote the estimate of the satisfied user
ratio at x given by the complementary cumulative distribution
function of the individual JND thresholds. We have

ŜUR(x) =

∫ ∞

x

ϕµ̄,σ2
0
(µ) dµ

= 1− Φ

(
x− µ̄

σ0

)
(1)

where ϕa,b2 denotes the probability density function of the
normal distribution with mean a and variance b2, and Φ is the
cumulative distribution function corresponding to ϕ0,1.

Let f(s) denote the probability density function of the
collective JND random variable at distortion level s. From
Definition 2, we have f(s) = E[ϕM ,σ2(s)], where E denotes
the expectation operator and M is the random variable that
gives the mean µ of the JND of a random observer. Thus,

f(s) =

∫ ∞

−∞
ϕµ,σ2(s)ϕµ̄,σ2

0
(µ) dµ.

Noting that ϕµ,σ2(s) = ϕ0,σ2(s − µ) and that the convolution
of two Gaussians is a Gaussian, we obtain

f(s) =

∫ ∞

−∞
ϕ0,σ2(s− µ)ϕµ̄,σ2

0
(µ) dµ

= (ϕ0,σ2 ∗ ϕµ̄,σ2
0
)(s)

= ϕµ̄,σ2+σ2
0
(s).

The SUR at distortion level x is the complementary cumulative
distribution function of f(s),

SUR(x) =

∫ ∞

x

ϕµ̄,σ2+σ2
0
(s) ds

= 1− Φ

(
x− µ̄√
σ2 + σ2

0

)
. (2)

If x < µ̄, then (x − µ̄)/
√
σ2 + σ2

0 > (x − µ̄)/σ0. Since Φ

is strictly increasing, (1) and (2) give ŜUR(x) > SUR(x).
Similarly, if x > µ̄, then ŜUR(x) < SUR(x).

The SUR takes the variance σ2 of the individual JND distri-
butions into account, which is ignored by the estimate ŜUR(x).

Using an example from the VideoSet data [3], we estimated
the parameters µ̄ and σ0 as 30 and 5, respectively. If we assume
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Fig. 2: Comparing the SUR curve of the collective JND distri-
bution vs. its estimate using the common approach as discussed
in Section III-B. In this plot, for the collective JND random
variable X , we assumed each observer i has a JND random
variable Xi ∼ N (µi, 5) where µi ∼ N (30, 25).

all participants have σ = 5, then for x = 22 < µ̄, we get
the true value SUR(x) = 0.871, which is overestimated as
ŜUR(x) = 0.945 as shown in Fig. 2.

In summary, we have provided a mathematical analysis of
a general model of a population of observers with normal
distribution functions of the individual JND random variables
with different means and equal variance. Our result proves that
fitting a distribution model to JND thresholds may over- or
underestimate the SUR.

When the SUR is overestimated, media are transmitted at
compression levels that are too strong. The fraction of viewers
that will notice compression artifacts will be larger than antic-
ipated. Similarly, when the SUR is underestimated, media are
transmitted at higher bitrates than necessary. Our analysis will
help to prevent such undesirable effects in practice.

C. The collective observer

To overcome the above limitations of the common method of
SUR estimation, one should compute the collective JND distri-
bution not from the individual JND thresholds alone, but from
the average of the entire individual JND distributions. For this
purpose, each participating subject in an empirical study could
compare each source stimulus with a number of compressed
versions of it and report whether a distortion can be detected.
Different implementations of this process are possible. From
such data, individual JND distribution functions can be fitted
and averaged for each source stimulus. The complementary
cumulative distribution functions serve as estimates of the cor-
responding SUR functions. We call this approach the “average
observer”.

However, considering a fixed budget for a number of com-
parisons of one source stimulus with its distorted versions, we
claim that it is inefficient to have a few subjects carry out mul-
tiple comparisons to assess each individual JND distribution,

all of which then are averaged to estimate the collective JND
distribution. Instead, it is better to have the comparisons done
by many different subjects to directly estimate the collective
JND distribution, as described in the following.

Definition 5 (Collective observer). A JND/SUR as-
sessment method is called a “collective observer” if it
directly estimates the collective JND distribution and the
SUR function as follows. Responses to a number of paired
comparisons between distorted stimuli and the source
stimulus are collected where each response is obtained
from a randomly selected observer. The collective JND
distribution function is estimated by a fitting procedure
applied to the collected responses.

In Subsection III-E, we present simulations that compare the
accuracy, precision, and efficiency of the collective and average
observer, as well as the common method of SUR estimation.

D. Modelling and estimation of the psychometric function

Psychometric functions for detection tasks like the one con-
sidered here are often modeled by S-shaped cumulative dis-
tributions functions F (x;α,β), where α and β are related to
the threshold and the slope at the threshold, respectively. For
example, in this section we use the Gaussian CDF

F (x;α,β) = Φ

(
x− α

β

)
. (3)

In psychophysics, it is common practice to use 2AFC ques-
tions in paired comparisons for JND threshold estimation. A
pristine and a distorted stimulus are presented in random order,
and the task is to identify the one with distortion. Just by
guessing, the correct response comes up with a probability of
1/2. To account for that, the psychometric function w.r.t. the
2AFC setting, giving the probability of a correct response, is
typically expressed as

ψ(x;α,β,λ) =
1

2
+

(
1

2
− λ

)
F (x;α,β). (4)

This includes a lapse rate λ, indicating a probability that the
distorted stimulus is not identified, regardless of how strong
the artifacts are. The lapse rate accounts, for example, for
moments when the observer was inattentive or the view of
the stimulus was obscured. From the cumulative distribution
function F (x;α,β), the SUR is obtained as 1− F (x;α,β).

There are many methods to estimate psychometric functions
empirically. Most are designed to just estimate the threshold
α as this is often the most important and only parameter of
interest. To quantify the SUR, however, we need the whole
psychometric functions, including the slope parameter β.

For several decades, adaptive methods have been researched,
in which an algorithm decides the next stimulus for a paired
comparison, based on the observer responses for the previous
comparisons. Two of the most prominent ones are PEST [46]
and QUEST+ [7]. In our work, we chose QUEST+, a recent
Bayesian method, which offers a very large palette of applica-
tion scenarios.
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(c) Common approach

Fig. 3: Average Bhattacharyya distance of estimated JND distributions to the ground truth for different budgets of paired
comparisons, derived from 1000 runs. The shaded areas are the 95% confidence intervals.

TABLE II: Parameters of 10000 simulated observers were
selected randomly from truncated normal distributions.

Lower Upper
Parameter Mean Variance bound bound
Threshold α 26 36 1 51
Standard deviation β 5.5 1.12 1 10
Lapse rate λ 0.02 0.00002 0 0.04

E. Comparison of the collective observer with other ap-
proaches

We compared the proposed collective observer for estimating
the collective psychometric function F (x;α,β) with the aver-
age observer and the common SUR estimation approach. For
this purpose, we used a simulation. In a simulation, the ground
truth collective JND distribution of a population is available, al-
lowing to study accuracy and efficiency of competing methods.

1) Simulated population of observers: We generated a pop-
ulation of 10000 simulated observers, each represented by an
individual psychometric function with a Gaussian CDF from
Equation (4). Gaussian CDFs have also been used in prior
research for the modeling of the JND [2], [3]. For each observer,
we randomly selected the parameters α,β in F (x;α,β) and the
lapse rate λ from truncated normally distributed values. Table II
summarizes these normal distributions.

The average of all individual psychometric functions
F (x;α,β) is the ground truth collective psychometric function
in our simulation. To numerically compare estimates with the
ground truth, we represented the collective psychometric func-
tion and the SUR by samples at equally spaced distortion levels
xm = 1 + m

100 ∈ [1, 51], m = 0, . . . , 5000.
In the following we present the implementation details for

the simulation of the collective and average observer as well
as the common estimation method. Simulations were then run
with a fixed budget of n paired comparisons.

2) Collective observer: We estimated the collective psy-
chometric function using the adaptive psychometric procedure
QUEST+. We simulated 2AFC paired comparisons between
distorted stimuli at levels x and the undistorted stimulus. Fol-
lowing the principle of the collective observer, we randomly
selected one of the 10000 observers for each comparison and
evaluated the corresponding individual psychometric function
(4), giving the probability of a correct response. The simulated

response was then drawn according to this probability. The
distortion levels for these comparisons were adaptively decided
by QUEST+ until the given budget was used up.

3) Average observer: In the average observer, individual
psychometric functions F (x;α,β) and corresponding JND dis-
tributions are estimated separately for up to 20 randomly se-
lected subjects from the population and then averaged. For each
of the chosen subjects, the individual psychometric function
was obtained by simulation of 2AFC paired comparisons using
QUEST+ as above, however, applying only the particular psy-
chometric function ψ(x;α,β,λ) of the corresponding subject.
The number of comparisons per subject was set to 30, which
is the recommended number for QUEST+ [7]. The number of
subjects was determined by the given budget.

4) Common SUR estimation: Commonly, the SUR function
is estimated by the complementary cumulative distribution of
a Gaussian density function that is fitted to a set of estimated
individual JND thresholds [5], [2], [4], [3]. To assess these
thresholds, we followed the latest of the above works, which
proposed a relaxed binary search method. For details, see [3].
The search space for the thresholds consisted of the integer
range from 1 to 51. Note that the number of comparisons
for each threshold estimate may vary between 10 and 11. We
estimated JND thresholds from randomly drawn subjects until
the budget was used up. For the set of estimated thresholds, a
Gaussian density function was fitted by maximum likelihood
estimation.

5) Accuracy of estimated collective JND distribution and
SUR: We compared the estimated collective JND distributions,
evaluated at the chosen distortion levels xm. The sampled val-
ues were scaled to yield probability distributions. To compare
an estimated distribution with the ground truth, we computed
the Bhattacharyya distance measuring the magnitude of the
difference between two probability distributions. Smaller dis-
tances indicate better approximation.

We compare estimates of the SUR function using the mean
absolute error (MAE), 1

5001

∑5000
m=0 |ŜUR(xm) − SUR(xm)|.

To check for the bias of the SUR estimate that is expected
from Proposition 1 for the common approach, we computed the
signed error at each distortion level, ŜUR(xm) − SUR(xm),
averaged over all simulation runs.
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(c) Signed SUR error, averaged over all
simulation runs with 600 PCs.

Fig. 4: Comparison of the collective observer, the average observer, and the common approach from 1000 simulation runs each.
Shown are (a) the computational complexities to yield an approximation of the collective JND distribution, (b) the achieved mean
absolute errors (MAE) for the estimated SUR functions using 600 PCs, and (c) the bias for each method at all distortion levels,
also with 600 PCs each.

6) Results: After generating the simulated observers and
computing the ground truth, we carried out 1000 simulation
runs for each assessment method and each budget of n = 30k,
k = 1, . . . , 20 paired comparisons.

Fig. 3 shows the average Bhattacharyya distances to the
ground truth distribution with 95% confidence intervals (CIs).
The mean distance for the collective observer clearly is much
smaller than that of the average observer and the common
approach. To better compare the efficiency of the methods,
Fig. 4a plots the required number of paired comparisons to
achieve a specified accuracy in terms of the average Bhat-
tacharyya distance. For instance, let us consider 30 individual
JND thresholds as assessed in VideoSet [3]. This requires
approximately 330 paired comparisons using the relaxed binary
search method to estimate the SUR for each source video. In our
simulation, 330 paired comparisons yielded a Bhattacharyya
distance of 0.027. By employing linear interpolation of the data
presented in the figure, we estimate that the collective observer
would only need 51 paired comparisons to achieve the same
mean distance, while the average observer would require 277.

In Figs. 4b and 4c we study the accuracy and bias of the
estimates of the SUR function. The histograms and density
plots for the SUR MAE clearly show the superiority of the
collective observer regarding accuracy. Fig. 4c reveals that in
the simulations the common approach overestimates the SUR
at substhreshold distortion parameters and underestimates it at
suprathreshold parameters. In comparison, the magnitude of the
corresponding bias for the collective and the average observers
appear negligible.

In summary, we have shown by simulation that the aver-
age observer as well as the collective observer are bias-free
and approximate the collective JND and SUR functions with
decreasing error when the number of paired comparisons is
increasing. The collective observer is more efficient than the
average observer and much more efficient than the current state-
of-the-art method that uses relaxed binary search to estimate
JND thresholds to be fitted by a Gaussian distribution.

We conclude this section by listing its main contributions in
the following:

• We provided a clear framework of definitions for individ-
ual and collective just noticeable difference.

• We showed that the current state-of-the-art method to es-
timate satisfied user ratio curves, based on fitting a model
to JND thresholds, suffers from a systematic bias, causing
an overestimation for subthreshold distortion levels and
underestimation for suprathreshold parameters.

• We introduced a new approach for the estimation of the
distribution of the just noticeable difference and satisfied
user ratio curves, based on the collective observer.

• We showed by a large-scale simulation that the collective
observer is much more accurate and efficient than the
common state-of-the-art method.

• The simulation confirmed the systematic bias that was
derived theoretically for the common method, while there
was hardly any such bias for the collective observer.

IV. FLICKER TEST FOR VIDEO-WISE JND ASSESSMENT

In this section, we describe how we adapted the flicker
test for JND-based video quality assessment. Also, we explain
how we re-encoded the videos for transmission to the users’
computers in the crowdsourcing experiment.

A. Test videos

1) Encoding source video sequences: We selected 45 source
videos with diverse content from VideoSet [3]. The source
video clips have a duration of 5 s, a spatial resolution of
1920 × 1080 pixels (full high-definition resolution), frame
rates of 24 and 30 fps, and color format YUV420p. The videos
do not include audio.

For encoding with H.264/AVC, we used FFmpeg with the
libx264 implementation of H.264/AVC with the “high” profile.
We disabled adaptive scene cut detection, used the quantization
parameter (QP) as the primary bit rate control method with
QP = 1, . . . , 51, disabled adaptive quantization, and set the
GOP size to the frame rate of the input video (24 or 30).

For encoding with H.266/VVC, we used the Fraunhofer Ver-
satile Video Encoder (VVenC) software with the expert mode
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Fig. 5: TI vs. SI of the 45 source videos.

encoder (vvencFFapp) implementation of H.266/VVC [47]. We
applied the “medium” preset, QP = 1, . . . , 63, disabled adap-
tive quantization, and set an intra-frame period of length 64.

Fig. 5 illustrates the diversity of the selected 45 cropped
source videos by showing temporal information (TI) against
spatial information (SI). TI and SI were calculated as in [48].

B. Generating flickering versions of the compressed test videos

For assessment of the QP at the JND in a sequence of
compressed versions of a source video, observers compare
compressed videos with the source video and report whether
they can perceive a difference between them. More precisely,
the order of the two videos to be compared is random, and the
observer must choose each time the distorted video. The videos
in the comparison can be played side-by-side or sequentially.
As an alternative to the playback of the compressed video,
we adapted the flicker test that was proposed by the ISO/IEC
standard 29170-2 for image quality assessment [40] to image
sequences as follows.

The frames of the source video alternate with the frames of
a compressed version with a temporal frequency of 8 Hz. For
example, suppose a source video has a frame rate of 24 fps.
Then, the first three frames of the source video are played,
followed by the next three frames, taken from the encoded
version. Next, the subsequent three frames of the source video
are played, and so on. We decoded the source and compressed
videos into RGB frames to create the flickering videos. The
observers are presented with such flickering videos side-by-side
with the source video and asked on which side they can notice
any flicker.

The generated flicker videos have a resolution of 1920 ×
1080 pixels, which is not practical for crowdsourcing. There-
fore, we cropped the sources, the flickering, and the compressed
videos to 640 × 480 pixels.

C. Video transmission to crowdworkers

In our empirical study, we compared side-by-side com-
pressed and source videos, as well as flickering and source
videos. For our online study, several such comparisons were
grouped in batches to be processed by observers. To avoid
stalling and other network and bandwidth-related issues, all
videos that were scheduled in a batch were loaded onto the

participant’s computer before playback. A flickering video gen-
erally has a high bitrate, roughly the same as the bitrate of
the source video because it contains frames from the source.
Therefore, we encoded the videos for transmission in a visually
lossless setting to reduce the download time in crowdsourcing.

In previous work using videos in crowdsourcing, authors kept
file sizes manageable by compressing videos with a constant
rate factor (CRF) of 18 in [49], an average file size of 1.23 MB
in [50], or cropped the high-resolution videos to 540p in [10].
In our work, we compressed the videos with a CRF of 12
to ensure perceptually lossless compression. We conducted a
small study to compare the JND location assessed by a small
group (10 people) for 10 source videos at CRF of 5, 10, and 12
using the flickering test. We found that there was no statistically
significant difference between the JND locations when using
these CRFs. Therefore we set the CRF to 12 to encode the
video sequences for transmission in our main crowdsourcing
experiment.

For visually lossless compression of the videos, we used the
x264 implementation of H.264/AVC with the “high” profile and
“veryslow” preset. We used CRF rate control and a GOP size
equal to the frame rate.

We used a commercial global content delivery network ser-
vice for fast, low-latency delivery of the test videos. Prior to
playback, the videos were preloaded onto the users’ machines.

V. CROWDSOURCING STUDY FOR JND ASSESSMENT

In our online experiment, we collected paired comparison
responses to estimate SUR curves for all combinations of
source videos, codecs, and test modalities. Thus, for each of
the 45 source videos, we estimated the collective psychometric
functions for the following sequences of stimuli:

• Compressed with AVC (QP = 0, . . . , 51),
• Compressed with AVC (QP = 0, . . . , 51) and interleaved

with the source,
• Compressed with VVC (QP = 0, . . . , 63),
• Compressed with VVC (QP = 0, . . . , 63) and interleaved

with the source.
This resulted in the estimation of 180 SUR curves.

We defined a question as showing a participant a side-by-side
paired comparison and asking the participant to select the side
of the flickering video in the flicker test or to identify the side
of the video with the lower quality in the plain test.

We used the freelancer.com platform (www.freelancer.com),
an online job marketplace that allows clients and freelancers to
collaborate. On this platform, clients create and submit projects
and freelancers bid to carry out the work. Freelancers can
communicate and chat with the client. Clients can also contact
their freelancers.

A. Overview

Fig. 6 shows the workflow of our study. To be eligible to
participate in the main study, subjects signed a consent form and
obtained a qualification label by passing a quiz. The main study
was divided into many small tasks. Once a task was completed,
a subject could take a break before proceeding to the next task.



10

Requirements

Freelancer star rate  ≥ 4.5/5

Work on daytime

Recommendations

Recommended Internet 

speed ≥ 8 Mb/s

Standard (home) office 

lighting conditions

Instructions

Ethical information and 

Informed consent

Collaboration

Collaboration interface for 

estimating the physical size 

of users' screens

Screen size ≥ 13.3 inches  

Instructing the subjects for 

correct viewing conditions

Instructions & Ethics Training session

4 paired comparisons for 

the plain test with 

immediate feedback 

4 paired comparisons for the 

flicker test with immediate 

feedback

Quiz session

5 paired comparisons for 

the flicker test  and 5 

paired comparisons for 

the plain test

Accuracy ≥ 90%

Get Qualification label 

and allowed to 

participate in the main 

study 

Main Study

Task 1

Flicker test

Plain test

Task 18

Questionnaire and 

feedback

Fig. 6: Workflow of the online subjective JND-based video quality assessment study.

B. Requirements

To ensure quality, we invited freelancers with a rating of at
least 4.5/5 from their previous jobs. The following requirements
were automatically checked.

• Desktops and laptops were allowed, while cell phones and
tablets were not.

• Firefox browser.
• Minimum logical resolution of 1366× 768 pixels.
• Work was allowed only during the daytime of the free-

lancer time zone.
• Minimum screen size of 13.3 inches.

We used the JavaScript “navigator” object to access the user
agent information and determine the type of device being used
by the participants. To get the logical resolution of the screen
used by a browser, we used JavaScript and the “window”
object’s properties. Participants were instructed to maximize
their browser window. If the browser was not maximized,
participants were prompted to maximize the browser, and the
experiment was paused until compliance was ensured. The
method used to estimate the physical screen size of the users
is described in Section V-E.

To display the entire graphical user interface (GUI) of our
subjective experiment, participants were required to have a
display with a minimum logical resolution of 1366 × 768 pixels
and a minimum physical size of 13.3 inches. The pixel density
for screens with this resolution and size is 117.8 pixels per inch
(PPI). In this case, the stimuli were displayed with a one-by-
one pixel ratio. Up-sampling was carried out for screens with
higher pixel density, while screens with lower pixel density
required down-sampling. However, up-sampling does not cause

any information loss and can be expected to have a negligible
effect on the perceived quality. On the other hand, the down-
sampling in our experiment resulted in only a slight reduction
of the logical image pixel density from 117.8 PPI to 102.46 PPI
in the worst case. Therefore, we do not expect that this process
significantly affected the results of the paired comparisons.

Moreover, freelancers were advised to check that their Inter-
net download speed was at least 8 Mb/s.

C. Instructions
Participants were given instructions in four steps. In the first

step, they were familiarized with the flickering videos and the
flicker effect by showing a source video and two flickering ver-
sions, one with barely perceptible distortion (flickering effect)
and one with a strong flicker effect, one after the other. The sec-
ond step showed a paired comparison between a source video
and a flickering version. The paired comparison was shown for
5 s, followed by a 3 s phase, in which an interface gave the
subjects the option of choosing the side of the flickering video
or pressing the “not sure” button. The “not sure” option was
used in [51] for paired comparisons to reduce stress and fatigue.
In [52], we demonstrated through a subjective study that
the inclusion of the "not sure" response option in the forced-
choice method reduces mental load and results in models with
improved goodness of fit. In the third step, we familiarized the
participants with the compressed videos. Another source video
and two compressed versions were shown, one with barely
noticeable distortion and one with heavy compression artifacts.
The fourth step showed a paired comparison between a source
video and its compressed version for the plain test. Finally, the
study and the payment method were explained.
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Fig. 7: User interface for the flicker test.

D. Ethics

Ethical approval of the experimental procedures and pro-
tocols was granted by the Institutional Review Board of the
University of Konstanz. The participants were given the study
instructions with further information, including the purpose and
benefits of the study and legal rights. Participants were given
the opportunity to ask questions and were requested to sign an
informed consent form.

E. Calibration

In an online assessment of perceived video quality, it is
challenging to ensure uniform experimental conditions for all
participants [53]. For example, the stimuli would have different
physical sizes on screens with different sizes and resolutions,
which would affect the perceived quality. Therefore, we dis-
played the videos with a fixed physical size on all participants’
screens and recommended a fixed viewing distance. For this
purpose, we implemented the calibration method described in
[14] to estimate the physical size of the screens of the partic-
ipants. In this method, after imposing the minimum resolution
described in Section V-B, the screen size is estimated with the
virtual chinrest method [54].

As a result, each video was rendered on all participants’
screens with a fixed physical size of 138mm × 103.5mm.
Therefore, for the side-by-side comparison, a fixed physical
size of 281mm × 103.5mm was used, including 5mm of
white space between the paired videos. The corresponding
calibration parameters were stored in the local memory of the
participants’ browsers. If the browser zoom level was changed
after calibration, the participant was asked to restore it or redo
the calibration.

We also asked the participants to adjust their viewing dis-
tance to 60 cm. This distance was derived by the trigonometric
calculation described in [54] and the ISO standard [55] for two
videos of width 138mm with a 5mm blank space in between.

F. Training session

To guide the participants in using our user interface and
familiarize them with the subjective task, we asked them eight
questions. The first four questions were presented using the
flicker test. The participants were shown a flickering video with
its high-quality source video and asked to choose “right”, “left”,
or “not sure” in response to the question “On which side did

you notice a flicker effect?” (Fig. 7). These stimuli were man-
ually selected. The stimuli in two questions were compressed
using AVC, and the stimuli in the other two questions were
compressed using VVC. The next four questions were about
the plain test. The test question was “Which video is of lower
quality?”

The order of the questions was randomized at the beginning
of each training session for each participant. Participants were
not allowed to work on a question until all required videos for
all the training questions were loaded. In one training question
of both the flicker test and plain test, two identical videos had
to be compared side-by-side. Only the answer “not sure” was
correct for this question. In another training question, the source
video was compared to a highly compressed video or a video
with a strong flicker effect. The only correct answer was to
choose the side of the compressed/flickering video. In two other
questions, a source video was compared to its compressed or
flicker version with barely perceptible distortion. Choosing the
side of the compressed video or “not sure” would be the correct
answer. If the answer was correct, a message confirmed that the
participant made the right choice. If the answer was incorrect,
a message explained why the choice was incorrect and helped
the participant on how to give the correct answer.

For each question, the source stimulus and its flickering or
compressed version were presented side by side randomly on
the left and right sides. During playback the “left” and “right”
buttons were enabled but the “not sure” button was disabled.
If the participant made a choice before the end of the video
duration (5 s), the next question was shown. Otherwise, the
participant was shown a decision-making interface for 3 s. In
this interface, the “left”, “right”, and “not sure” buttons were
enabled. A progress bar was presented to visualize progress.

G. Quiz session

Participants were only allowed to take part in the main study
if they passed a quiz. There were 10 quiz questions, with the
first five for the flicker test, and the second five questions for the
plain test. Although the content of the quiz videos was different
from that of the training videos, the steps for answering a
quiz question were the same as those for answering a training
question, except that no feedback was provided to participants
after each quiz question.

In the quiz session, for each test condition, i.e., flicker test
or plain test, the compared videos were identical in one of
the questions. For this question, the answer “not sure” was
the correct response. In another question, the flicker effect or
compression level was strong. Thus, the correct response was to
select the side of the flickering, resp. compressed video. For the
remaining three questions, the stimuli had barely perceptible
distortions around the JND location assessed by the authors.
Therefore, for these three questions, choosing the side with the
flickering, resp. compressed video or pressing the “not sure”
button was regarded as the correct response.

Once a participant completed the quiz, the result was sent
to our server. Participants with a score of at least eight correct
answers for the ten questions received a qualification label, and
a new page with the link to the main study was displayed.
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Participants with lower score received a message informing
them of their failure and were not allowed to redo the training
and quiz sessions.

H. Main study

When a participant with a valid qualification label opened the
link to the main study, the requirements of Subsection V-B were
checked. If these were satisfied, the local browser storage was
checked to determine whether the calibration was completed.
If there was such a record, the participant was allowed to start
the main study. If the browser was not already maximized, the
participant was asked to do so. On the other hand, if no record
was saved in the browser’s local storage, the participant had to
repeat the calibration, training, and quiz.

For each sequence of stimuli, the sequence of QPs that define
the requested paired comparisons was generated adaptively by
QUEST+. After a participant answered the paired comparisons
in a task, the results were sent to the corresponding QUEST+
objects in our server, and the next QPs were determined for
delivery to other participants.

Each task of ten questions consisted of two parts. For the
first part, five different sources were randomly picked together
with one of the two encoders, AVC or VVC, and the flicker test
condition. The second part used the same five source videos
and encoders, but with the plain test condition. The QPs for
all compressed resp. flickering versions were determined by
QUEST+

This task structure provided a within-subject study design for
comparing the flicker test to the plain test.

We used the collective observer method described in Sec-
tion III to estimate each of the 180 collective psychometric
functions. To emulate the collective observer, we restricted
our subjects to provide only a single response to the paired
comparisons per sequence of stimuli. Furthermore, because the
paired comparisons were presented to participants in batches of
10, each participant could complete no more than 18 tasks with
10 comparisons each.

To correctly assemble the tasks for delivery to participants,
our server maintained a table of available paired comparisons
and, for each participant, a list of already issued comparisons.
The table showed whether there was a next available QP for
each of the 180 combinations of the source video, encoder,
and test condition. If that was the case, the QP was given.
Otherwise, a flag was set.

For each task, the server uploaded 15 videos to the computer
of a freelancer: five source videos (used in both parts of the
task as source videos), five compressed versions (for the plain
test), and five compressed and interleaved versions (for the
flicker test). After the download was completed, the participant
could start to answer the corresponding 10 questions. As in the
training session, video pairs were played for 5 s. Participants
who did not make a decision during these 5 s were given an
additional 3 s.

When the task was finished, the participant was asked to rest,
reread the instruction, do the next task, or quit the experiment.
Also, counters that showed the number of the already finished
and the remaining open tasks were shown.

If a participant did not answer a paired comparison for one of
the test conditions (flicker test or plain test) within the given 8 s,
the answer for the question of the same source video in the other
test condition was also discarded, and both paired comparisons
were returned to the server to be reinserted in the table for future
tasks.

VI. EXPERIMENTAL RESULTS

In total, 67 freelancers participated in the training session and
took the quiz. Of the 57 freelancers who passed the quiz, 55
placed a bid. Then, through the freelancers.com chat tool, the
first author discussed the project with them to ensure they fully
understood the test. Of the 55 freelancers who submitted a bid,
51 took part in the study. Some demographic and experimental
data collected through questionnaires from the freelancers are
illustrated in Fig. 8.

The average time taken by freelancers to complete the initial
tasks, including reading instructions, filling in the consent form,
and performing calibration, was 5:21 min. The training session
lasted approximately 1:45 min, followed by a quiz taking an
average of 1:09 min.

Workers who successfully passed the quiz were eligible
to participate in the main study, where they completed up
to 18 assignments. Each assignment consisted of 10 paired
comparisons (5 for each test condition). On average, workers
spent 0:57 min answering the 10 questions per assignment.
The duration for video preloading was not considered in these
calculations.

A. Data filtering

In the subjective experiment, we used the relaxed forced-
choice method. In addition to the “right” and “left” stimuli, this
method also provides the “not sure” option. With the flicker
test, a reliable subject would either select the flickering video
correctly or press “not sure” if the flicker effect was below
the perceptual threshold. Therefore, a subject who selected the
source video was considered inattentive at this time, and we
discarded these responses and their corresponding responses
for the plain test to ensure the within-subjects design. For the
plain test, we proceeded accordingly. As a result, we removed
5.24% of all responses. We then reconstructed the psychometric
functions of the population based on the remaining responses.

B. Probability distribution fitting

For the psychometric function in (4), we used the Weibull
cumulative distribution function

F (x;α,β) = 1− e−(x/α)β for x ≥ 0

where α > 0 is the scale parameter and β > 0 is called the
slope. The Weibull distribution is flexible and allows the fitting
of non-symmetric curves.

The fitting is based on maximum likelihood estimation. Since
each psychometric function can only specify the probability of
correct detection, we needed to also define the probability of
the “not sure” response. In the model of the 2AFC setting, the
participant does not have the “not sure” option and would have
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Fig. 8: Participant diversity and experimental insights: Data from 51 freelancers in the subjective study.

to select one of the sides “left” or “right” at random. This led
us to treat a “not sure” response as two responses, one for “left”
and one for “right”, each weighted by a factor of 1/2.

Using QUEST+, we also included the lapse rate parameter λ
of the psychometric function (4) in the estimation besides the
scale α and the slope β. Between 43 to 51 paired comparisons
were collected to estimate the parameters of a psychometric
function. Fig. 9 presents examples of the resulting SUR func-
tions SUR(x;α,β) = 1 − F (x;α,β) for some source videos
using the flicker test and the plain test.

For further analysis of the results in terms of sensitivity
and precision of the flicker test compared with the plain test,
we calculated the JND threshold xJND for each Weibull JND
distribution with F (xJND;α,β) = 0.5 and the variance σ2 =
α2
[
Γ(1 + 2/β)− (Γ(1 + 1/β))2

]
, where Γ is the Gamma

function.

C. Sensitivity

Fig. 9 shows estimated SUR curves for the flicker test and
the plain test. Curves that are more to the left indicate a more
sensitive JND assessment because differences to the source
video are detected for smaller QPs. This shift of the JND caused
by the flicker test can be quantified by ∆JND, the JND threshold
assessed with the flicker test minus the threshold assessed
with the plain test for the same source video compressed with
the same video codec. The figure shows that the flicker test
provided a more sensitive JND assessment (∆JND < 0) for the
source videos SRC129, SRC193, and SRC009 and both codecs
AVC and VVC. However, for the source video SRC059, the
plain test was more sensitive (∆JND > 0).

To summarize the comparison of the two test conditions for
all 45 sources and both codecs, we show the boxplots of the
JND thresholds for the videos compressed with AVC and VVC
in Fig. 10 (a) and (c). We note that the mean thresholds derived
with the flicker test are smaller than those from the plain test
(33.5 and 36.4 for the flicker test vs. 34.1 and 38.5 for the
plain test). Parts (b) and (d) of the figure show the differences
between the JND thresholds estimated with the flicker test and
those estimated with the plain test. The differences are negative
in most cases. Overall, the result shows that, on average, the
flicker test was more sensitive than the plain test.

To check whether this finding is statistically significant, we
conducted a nonparametric paired samples Wilcoxon signed-
rank test to examine the hypothesis that the flicker test has a
higher sensitivity than the plain test.

The null hypothesis was that the median of the JND differ-
ences for the same source videos and compression codec comes

from a distribution with a median of zero against the alternate
that the median is less than zero. The p-value for the test was
0.0004, which means that the test rejected the null hypothesis
with 95% confidence level in favor of greater sensitivity of the
flicker test.

In some cases, the flicker test was less sensitive than the
plain test (∆JND > 0), namely for 16 of 45 source videos
for AVC compressed videos, and for 10 of 45 source videos
for VVC compressed videos, see Figs. 9 (d,h) and 10 (b,d).
This may be due to the strong motion in the videos, which
may have masked the flicker effect. Videos with strong motion
have large temporal information. Fig. 11 shows the temporal
information versus ∆JND. The plain test is more sensitive when
∆JND > 0, i.e., in the region on the right side of the vertical
line. The source video sequences, determined to have high
motion through a visual inspection conducted by the authors,
were marked with crosses. For most of these videos, the flicker
test did not yield higher sensitivity. This confirms that strong
motion in the video may indeed mask the flicker effect, thereby
reducing the sensitivity.

D. Precision

As common in statistics, we express the precision of a ran-
dom variable as the reciprocal of its variance. A small variance
of the collective JND results in high precision and typically
corresponds to a larger (absolute) slope of the SUR curve at
the JND threshold, as seen in the examples for the flicker test in
Fig. 9. To compare the two test conditions for all 45 sources and
both video codecs, we show the boxplots of the variances of the
JND distributions and the pairwise differences of variance in
Fig. 12. The variances derived from the flicker test typically are
smaller than those from the plain test. Negative ∆Variance was
observed in 35 out of 45 source videos for AVC compression,
and in 26 out of 45 source videos for VVC compression.

We applied the paired-samples Wilcoxon sign-rank test to
examine the hypothesis that the flicker test yields smaller
variances in the estimated JND distributions and thus provides
greater precision in JND threshold assessment than the plain
test. The null hypothesis of the test was that the differences
between the variances for the same source videos and compres-
sion codec come from a distribution of zero median against the
alternate hypothesis that the median is less than zero. The p-
value of the test was 0.033, clearly rejecting the null hypothesis
at the 5% significance level.
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Fig. 9: SUR curves for the flicker test and the plain test. The first three columns show the SUR curves with and without the flicker
test for the source videos with the smallest (negative) ∆JND values, averaged for AVC and VVC, while the fourth column shows
them for the source video with the largest average ∆JND.
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Fig. 10: Comparison between the JND threshold estimation by the flicker test and the plain test. The boxplots in (a) and (c) show
the summary statistics of the JND thresholds for the flicker test and the plain test, respectively. The bars in (b) and (d) show, for
each of the 45 source videos, the difference ∆JND between the JND threshold estimated with the flicker test and the one estimated
with the plain test. A negative difference means that the flicker test is more sensitive.

E. Time complexity

The flicker test in crowdsourcing required more time than
the plain test. The flickering videos have about the same bitrate
as the source video. For the plain test, compressed videos are
transmitted, which requires much less download time (Sec.
IV-C). However, the waiting time for the complete upload of all
videos required in a task with flicker tests was less than twice
as large as with plain tests.

The response time is the duration from the start of the display
of the stimuli to the time when the participant pressed one of
the “left”, “right”, or “not sure” buttons. In our experiment, the
response time for paired comparisons with the flicker test was
slightly longer than that for the plain test, 5.0 s for the flicker
test vs. 4.7 s for the plain test. However, this difference is very
small and hardly relevant for subjective experiments.

Fig. 13 compares the cumulative distribution of the partic-
ipants’ responses time for the flicker test and the plain test.
For more than half of the comparisons, the response time was
greater than 5 s, which is the duration of the videos. In these

cases, participants viewed entire paired videos before making
their decision within the 3 s window following the video play-
back.

The cumulative response time curves for both tests sharply
increase in steepness about 500 ms after the end of the video
playback. This corresponds well to the expected reaction time
required for a participant to press one of the buttons when the
video playback is finished.

VII. CONCLUSION

When compressing video sequences to smaller bitrates, the
probability that an observer cannot see any distortion in the
reconstructed video is of interest in many applications. This
paper presents improvements in methods for the estimation of
these so-called satisfied user ratios. We showed that the com-
mon procedure of fitting a distribution model to JND thresholds
suffers from a bias. This bias is removed by our proposed col-
lective observer method, in which a randomly selected observer
responds to each comparison of a compressed video with its
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source. This is also more efficient than estimating and averaging
the psychometric functions of many individual observers. For
the purpose of estimating the collective psychometric function,
we applied an adaptive psychometric Bayes method, QUEST+,
in a crowdsourcing environment.

For our experimental work, we adapted the flicker test for
paired video comparisons, which had been developed for evalu-
ating near-lossless image coding. We implemented a web-based
user interface using a within-subject study design for evaluating
video quality under the two test conditions, i.e., the flicker test
and the plain side-by-side comparison. This web interface and
the crowdsourcing environment were governed by our server
application that ran multiple parallel instances of QUEST+ to
adaptively determine the stimuli delivered in each task for each
study participant. We estimated the SUR curves of 45 source
video sequences encoded with AVC and VVC at all available
QP values. The results show that the flicker test increased
the sensitivity and precision of the JND-based video quality
assessment compared to plain side-by-side presentation. Our
dataset will be made available online at the time of publication.

Our approach paves the way for larger and better quality
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Fig. 13: Cumulative response time for paired comparisons.

datasets of JNDs in video compression and corresponding SUR
curves. In our future work, we will conduct such a large-scale
crowdsourcing campaign. Furthermore, in a laboratory study,
we will evaluate the JND and SUR curves for high-resolution
videos of 1920×1080 and 3840×2160 pixels.
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